
Renormalization and tensor product states in spin chains and lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 504004

(http://iopscience.iop.org/1751-8121/42/50/504004)

Download details:

IP Address: 171.66.16.156

The article was downloaded on 03/06/2010 at 08:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/50
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 504004 (34pp) doi:10.1088/1751-8113/42/50/504004

Renormalization and tensor product states in spin
chains and lattices

J Ignacio Cirac1 and Frank Verstraete2

1 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
2 Fakultät für Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria

E-mail: ignacio.cirac@mpq.mpg.de and frank.verstraete@univie.ac.at

Received 5 June 2009, in final form 7 October 2009
Published 2 December 2009
Online at stacks.iop.org/JPhysA/42/504004

Abstract
We review different descriptions of many-body quantum systems in terms of
tensor product states. We introduce several families of such states in terms
of the known renormalization procedures, and show that they naturally arise
in that context. We concentrate on matrix product states, tree tensor states,
multiscale entanglement renormalization ansatz and projected entangled pair
states. We highlight some of their properties, and show how they can be used
to describe a variety of systems.

PACS numbers: 02.70.−c, 03.67.−a, 05.30.−d, 03.65.Ud

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The many-body quantum states appear in many contexts in physics and other areas of science.
They are very difficult to describe, even computationally, due to the number of parameters
required to express them, which typically grows exponentially with the number of particles.
Let us consider a spin chain of N spin s systems. If we write an arbitrary state in the basis
|n1, . . . , nN 〉, where nk = 1, . . . , (2s + 1), we will have to specify (2s + 1)N coefficients.
Even if s = 1/2, and N ∼ 50, it is impossible to store such a number of coefficients in a
computer. Furthermore, even if that were possible, when we want to make any prediction,
like the expectation value of an observable, we will have to operate with those coefficients,
and thus the number of operations (and therefore the computational time) will inevitably grow
exponentially with N.

In many important situations, one can circumvent this problem by using certain
approximations. For example, sometimes it is possible to describe the state in the so-called
mean field approximation, where we write |�〉 = |φ1, . . . , φN 〉, i.e. as a product state. Here,
we just have to specify each of |φM〉, and thus we need only (2s + 1)N coefficients. This
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method, even though it has a restricted validity in general, and its extensions have been very
successful in describing many of the phenomena that appear in quantum many-body systems.
This indicates that, among all possible states, the ones that are relevant for many practical
situations possess the same properties as product states. Another very successful method is
renormalization [1, 2] which, in the context of spin chains and lattices, tries to obtain the
physics of the low-energy states by grouping degrees of freedom and defining new ones that
are simple to handle, so that at the end we can cope with very large systems using very few
parameters. There are successful methods to uncover the physical properties of many-body
systems which exploit numerical approaches. The first one is quantum Monte Carlo, which
samples product states in order to get the expectation values of physical observables. Another
method is the density matrix renormalization group (DMRG) [3, 4], which is specially suited
for 1D lattices, and is based on renormalization group ideas.

1.1. DMRG and tensor product states

Wilson’s renormalization method provided a practical way of qualitatively determining the
low-energy behavior of some of those systems. However, it was by no means sufficient to
describe them quantitatively. In 1991, Steve White [3, 4] proposed a new way of performing
the renormalization procedure in 1D systems, which gave extraordinary precise results. He
developed the DMRG algorithm, in which the renormalization procedure takes explicitly into
account the whole system at each step. This is done by keeping the states of subsystems which
are relevant to describe the whole wavefunction, and not those that minimize the energy on
that subsystem. The algorithm was rapidly extended and adapted to different situations [5, 6],
becoming the method of choice for 1D systems. In 1995, Ostlund and Rommer [7] realized
that the state resulting from the DMRG algorithm could be written as a so-called matrix
product state (MPS), i.e. in terms of products of certain matrices (see also [8–10]). They
proposed to use this set of states as a variational family for infinite homogeneous systems,
where one could state the problem without the language of DMRG, although the results did
not look as precise as with the finite version of that method. Those states had appeared in the
literature in many different contexts and with different names: first, as a variational ansatz for
the transfer matrix in the estimation of the partition function of a classical model [11], and later
on, in the AKLT model in 1D [12, 13], where the ground state has the form of a valence bond
solid (VBS) which can be exactly written as an MPS. Translationally invariant MPS in infinite
chains were thoroughly studied and characterized mathematically in full generality in [14],
where they called such family finitely correlated states (FCS). The name MPS was coined later
on by Klümper et al [15, 16], who introduced different models extending the AKLT where the
ground state had the explicit FCS form. All those studies were carried out for translationally
invariant systems, where the matrices associated with each spin do not depend on the position
of the spin. An extension of the work of Fannes et al [14] to general MPS (i.e. finite and
non-homogeneous states) appeared much later on [17].

Given the success of DMRG in 1D, several authors tried to extend it to higher dimensions.
The first attempts considered a 2D system as a chain, and used DMRG directly on the chain [18–
20], obtaining much less precise results than in 1D. Another attempt considered a homogeneous
3D classical system and used ideas taken from DMRG to estimate the partition function of
the Ising model [21]. A different approach was first suggested by Sierra and Martin-Delgado
[22], and inspired by the ideas of Ostlund and Rommer [7]. They introduced two families of
translationally invariant states, the vertex- and face-matrix product state ansätze, and proposed
to use them variationally for 2D systems, in the same way as Ostlund and Rommer used FCS in
1D. The first family generalized the AKLT 2D VBS state [12] in as much the same way as FCS
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did in 1D. The second one was inspired by interaction-round-the-face models in (classical)
statistical mechanics. The inclusion of few parameters in the VBS wavefunction of AKLT to
extend that model was first suggested in [23]. The authors also showed that the calculation of
expectation values in those VBS could be thought of as evaluating a classical partition function,
something they did using Monte Carlo methods [23], and Hieida et al using ideas taken from
DMRG [24]. Later on, Nishino and collaborators used the representations proposed by Sierra
and Martin-Delgado, as well as another one they called interaction-round-a-face (inspired
by the specific structure of the transfer matrix of the classical Ising model) to determine the
partition function of the classical Ising Model in 3D variationally [25–29]. For instance,
in [28] a vertical density matrix algorithm was introduced to calculate the thermodynamical
properties of that model based on the the interaction-round-a-face representation and in [27]
a perturbation approach was taken for the vertex matrix product state, which turns out to be
numerically unstable. Eventually, quantum systems at zero temperature were considered by
direct minimization of trial wavefunctions of the VBS type with few variational parameters
[30, 31]. In summary, most of the attempts in 2D quantum systems (and 3D classical ones)
tried to generalize the method of Ostlund and Rommer [7] by using families of states that
extended FCS to higher dimensions, and dealing with infinite homogenous systems. FCS and
their extensions were based on tensors contracted in some special ways, and thus all of them
were called tensor product states (TPS). Nevertheless, no DMRG-like algorithm for 2D or
higher dimensions was put forward (except for the direct application of DMRG by considering
the 2D system as a 1D chain).

The success of DMRG for 1D systems indicated that the family of states on which it is
based, namely MPS, may provide an efficient and accurate description of spin chain systems.
In higher dimensions, however, the situation was much less clear since only infinite systems
were considered and the numerical results were not entirely satisfactory.

1.2. The corner of Hilbert space

One can look at the problem of describing many-body quantum systems from a different
perspective. The fact that product states in some occasions may capture the physics of a
many-body problem may look very surprising at first sight: if we choose a random state
in the Hilbert space (say, according to the Haar measure), the overlap with a product state
will be exponentially small with N. This apparent contradiction is resolved by the fact that
the states that appear in nature are not random states, but they have very peculiar forms.
This is because of the following reason. If we consider states in thermal equilibrium, each
state of a system, described by the density operator ρ, is completely characterized by the
Hamiltonian describing that system, H, and the temperature, T, ρ ∝ e−H/T . In all systems we
know that the Hamiltonian contains terms with at most k-body interactions, where k is a fixed
number independent of N which typically equals 2. We can thus parameterize all possible
Hamiltonians in nature in terms of (N, k) × (2s + 1)2k . The first term is the number of groups
of k spins, whereas the second one gives the number of parameters of a general Hamiltonian
acting on k spins. This number scales only polynomially with N, and thus all possible density
operators will also depend on a polynomial number of parameters. In practice, if we just have
2-body interactions (i.e. k = 2), and short-range interactions, the number will be linear in N.
If we additionally have translational symmetry, the number will even be independent of N.
This shows that even though we just need an exponential number of parameters to describe a
general state, we need very few to describe the relevant states that appear in nature. In this
sense, the relevant states are contained in ‘a corner of the Hilbert space’. This representation
is, however, not satisfactory, since it does not allow one to calculate expectation values.
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These facts define a new challenge in many-body quantum physics, namely, to find good
and economic descriptions of that corner of Hilbert space, that is, a family of states depending
on few parameters (which increase only polynomially with N), such that all relevant states in
nature can be approximated by members of such a family. If we were able to do that, as well
as to characterize and study the properties of such a family, we would have a new language
to describe many-body quantum systems which may be more appropriate than the one we use
based on Hilbert space expansions. Apart from that, if we find algorithms which, for any given
problem (say, a Hamiltonian and a temperature), allow us to determine the state in the family
which approaches the exact one, we will have a very powerful numerical method to describe
quantum many-body systems. It is clear that product states are not enough for that task, since
they do not posses correlations (nor entanglement), something that is crucial in many physical
phenomena. So, the question is how to extend product states in a way that they cover the
relevant corner of Hilbert space.

One possible strategy to follow is to determine a property that all the states on that corner
have, at least for a set of important problems. If we then find a family of states which includes
all states with that particular property, we will have succeeded in our challenge. But, what
property could that be? Here, the answer may come from ideas developed in the context,
among others, of quantum information theory. One of such ideas appears for the subclass
of problems with Hamiltonians that contain finite-range interactions (i.e. two spins interact if
they are at a distance smaller than some constant), have a gap (i.e. for all N, E � E0 + �,
where E is the energy of any excited state, E0 that of the ground state and � > 0) and are at
zero temperature. In that case, the so-called area law naturally emerges [32–37]. It states that
for the ground state of such a Hamiltonian, |�0〉, if we consider a block, A, of neighboring
spins, the von Neumann entropy of the reduced density operator of such a region, ρA, scales
with the number of particles at the border of that region. This is quite remarkable, since the
von Neumann entropy, being an extensive quantity, for a random state will scale with the
number of particles in A, and not in the border. The area law has been proven in 1D spin
chains [38], and it is fulfilled for all Hamiltonians we know in higher dimensions. Even for
critical systems, where the gap condition is not fulfilled, only a slight violation occurs (namely
that it is proportional to the number of spins at the border, L, times log L) [36, 39, 40]. What
happens at finite temperature? In that case one can also find a global property of all states in the
corner of Hilbert space which extends the area law. In contrast to the zero temperature case,
now this can be rigorously proven for any Hamiltonian possessing finite-range interactions
in arbitrary dimensions [41]. The property is the following: given a region A as before, the
mutual information between the spins in that region and the rest of the spins (in region B) is
bounded by a constant times the number of spins at the border divided by the temperature.
Here, the mutual information is defined as I (A : B) = S(ρA) + S(ρB) − S(ρAB), where S is
the von Neumann entropy, and ρX is the density operator corresponding to the region X.

There is a way of constructing families of states explicitly fulfilling the area law. Let us
first consider a 1D chain with two spins per site in which we entangle each of them with the
nearest-neighbor spins (to the right and to the left, respectively). If we now consider a block
of neighboring sites, only the outermost spins will contribute to the entropy of that block, and
thus the area law will be fulfilled. Furthermore, if we project in each site the state of the two
spins onto a subspace of a lower dimension, the resulting state will also fulfil the area law. This
construction can be straightforwardly extended to higher dimensions, just by replacing each
spin in the lattice by z auxiliary spins which are pair-wise entangled with their neighbors (here
z is the coordination number of the lattice). By projecting the state of the auxiliary spins onto
the Hilbert space of the original spin at each site, we obtain a state automatically fulfilling the
area law. This construction, which is inspired by the VBS [12], was introduced in the context
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of quantum information in order to study localizable entanglement of spin chains [42] and to
give an alternative explanation of the measurement based model of quantum computation [43].
Later on, it was extended to describe general spin lattice systems in [44], where the resulting
states were called projected entangled pair states (PEPS), given the way they were defined.
In that work, a method to approximate the ground state wavefunction in terms of PEPS for
finite systems was introduced, which allowed us to find the optimal projectors at each site in
very much the same way as DMRG does it in 1D. Thus, the method can truely be considered
as an extension of the DMRG algorithm to higher dimensions, although computationally it is
much more demanding. The key ingredient in that method was a new algorithm that allows
one to optimally approximate arbitrary states by PEPS in a variational fashion.

By explicitly expressing the projectors appearing in the PEPS in an orthonormal basis,
one can immediately see that they have a tensor product form. In fact, in 1D the family of
PEPS coincides with the MPS [42]. In higher dimensions, if one takes an infinite system and
chooses all the projectors to be identical, the so-called iPEPS [45] coincide with the vertex
matrix product ansatz introduced by Sierra and Martin-Delgado [22]. The PEPS construction,
however, apart from giving rise to (finite) DMRG-like algorithms in higher dimensions gives
a clear picture of the entanglement properties of those states (as, e.g. related to the area
law) as well as how correlations are carried over by the entangled auxiliary particles. More
importantly, it can be used to extend the PEPS to fermionic systems still keeping all the
properties that made them special [46].

The fact that PEPS fulfil the area law puts them in a privileged position to efficiently
describe the corner of Hilbert space. In fact, in 1D systems at zero temperature it is possible
to show (i) that all gapped Hamiltonians with finite-range interactions fulfil the area law [38];
(ii) all states fulfilling the area law (even with logarithmic corrections) can be efficiently
approximated by MPS with a number of parameters that only scales polynomially with N [49]
(see also [50]). This means that for those systems at zero temperature we have found what we
were looking for and explain why the celebrated DMRG method introduced by White [3, 4]
gives extraordinary approximations to the ground state of (finite) 1D spin chains.

A complementary approach to determine the interesting corner of Hilbert space has been
pursued by Hastings [51] (see also [52]). Very remarkably, he has been able to prove that, for
any finite temperature in any dimensions and Hamiltonian with finite-range interactions, PEPS
efficiently describe the thermal state in the sense that they approximate it arbitrarily close with
a polynomial number of parameters. (Note that a mixed state can be described in terms of
PEPS using the techniques of purification [47, 48].) This shows that, for those problems,
the corner of Hilbert space has been identified. Note that the restriction of finite temperature
does not matter in many practical situations, since in any system we will always have that. It
is, nevertheless, interesting to investigate what happens at exactly zero temperature. In that
case, if one imposes a natural condition on the Hamiltonian (related to how the density of
states above the ground sate grow), Hastings has also proven that PEPS provide an efficient
description (note that for 1D systems the area law already implies that [49]). In summary, MPS
in 1D and PEPS in higher dimensions provide us with accurate descriptions of the states that
appear in nature under the conditions specified above (most notably, short-range interactions).

1.3. Tensor product states and renormalization group methods

All the states above fall into a general class of states which can be called TPS3. This class
also contains states such as tree tensor states (TTS) [53] or multiscale renormalization ansatz

3 Several authors have recently started calling this family of states tensor network states (TNS). Here, for historical
reasons, we will call them TPS.
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(MERA) [54, 55]. It is characterized by the fact that the states are specified in terms of a few
tensors, of the order of N, each of them having a small rank and low dimensions. Thus, they
provide economic descriptions of certain quantum states. During the last years a number of
algorithms have been proposed to determine those TPS for specific problems, giving rise to
new numerical methods suitable to describe certain many-body quantum systems. The purpose
of the present paper is to provide a pedagogical review of some of the most important TPS, and
to connect them to the successful real-space renormalization procedures that have been used in
condensed matter physics for many years. As we shall explain, most of the TPS lie at the basis
of such procedures. Making the connection between those two problems (renormalization
and tensor product states) offers a new perspective for both of them, and explains the success
of some schemes from a different point of view. In particular, it relates the structure of the
states that appear in nature under some conditions with the ones that naturally appear in every
renormalization procedure. We will mostly concentrate on MPS and PEPS, but we will also
cover in part TTS and MERA, and briefly describe the rest. Note that, in the case of PEPS, we
have not been able to connect them to any known renormalization scheme. Nevertheless, it
may be interesting to find such a renormalization procedure since it may give another insight
in the field of condensed matter physics. Furthermore, very recently, several renormalization
methods have been introduced in order to determine expectation values of this and other kinds
of TPS [56–58], which is another evidence of the strong bonds existing between these two
fields.

This paper is organized as follows. Section 2 deals with MPS. We first introduce them
in terms of a renormalization procedure, and then explain two different methods to carry out
that procedure: real-space renormalization [1] and DMRG [3]. We also present them from
a quantum information perspective, as the states that can be obtained by projecting pairs
of entangled states into lower dimensional subspaces. This provides a physical picture of
the states, which can be easily extended to higher dimensions and fermionic systems. We
also review how expectation values can be efficiently determined, and introduce a graphical
representation of the state which strongly simplifies the notation and which will be used
later on instead of complex formulas. We show how MPS can be generated by a sequential
application of quantum gates [59] which, apart from providing us with a specific recipe of
how to engineer those states in practice, will allow us to connect MPS and TTS in a simple
way. Then we illustrate how to approximate arbitrary states by MPS. This provides the basis
of several algorithms that have been recently introduced to determine the ground state in
different situations [10, 61, 60], time evolution [47, 62–69] and thermal states [47, 48, 70] of
1D spin chains. Finally, we introduce matrix product operators [47, 48], and show how they
can be used to determine expectation values in a different way or to describe thermal states
via the purification procedure. Section 3 contains a summary of a different renormalization
method from which TTS naturally emerge. As in the case of MPS, we show how one can
determine expectation values, and other quantities. In fact, it will become apparent that the
algorithms described in the previous section can be extended to TTS without much effort.
We also relate MPS and TTS showing that one can be expressed in terms of the other one
with a logarithmic effort. Then in section 4 we review yet another renormalization procedure
[84, 85] which allows us to introduce the MERA [54, 55] from a different perspective.
As opposed to the TTS, the MERA can be extended to higher dimensions still fulfilling
the area law, which makes them suitable to study spin systems beyond chains. One way
of generalizing MPS to higher dimensions is through the PEPS, which are the subject of
section 5. As opposed to the previous sections, PEPS are not introduced in terms of a
renormalization group procedure, but following the intuition provided by the area law and the
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entanglement present in the state. We finish the paper by reviewing some other extensions of
MPS to higher dimensions (for homogeneous and infinite systems).

Although we briefly mention how to build algorithms using TPS, this is not the main
purpose of this paper. For the readers interested in the algorithms, rather than in the way they
appear and some of their properties, we recommend to have a look at [71]. For the readers
interested in the mathematical properties of MPS and PEPS, as well as the development of a
whole theory of many-body states based on that representation, we refer to the paper [72].

In the following, we denote the single spin Hilbert space by H1, of dimension d = 2s + 1.
Spins interact with each other according to some Hamiltonian H = ∑

λ hλ, where λ denotes
some sets of spins. As mentioned above, we will introduce different renormalization
procedures whose aim is to reduce the number of degrees of freedom by putting together
some spins and applying certain operators to neighboring blocks of spins.

2. Matrix product states

The standard Wilson renormalization group (RG) procedure as applied to quantum impurity
models can be viewed as follows [1, 73]. We take the first two spins, and consider a subspace
of the corresponding Hilbert space, H2 ⊂ H1 ⊗ H1, of dimension d2 � d2

1 . Now we add the
next spin, and consider a subspace of the Hilbert space of the three spins, H3 ⊂ H2 ⊗ H1,
of dimension d3 � d2d1. We proceed in the same way until we obtain HN ⊂ HN−1 ⊗ H1,
and dN � dN−1d1. Now, we approximate the Hamiltonian H by PNHPN , where PN is the
projector onto HN. If we can carry out this procedure, and we choose dN sufficiently small, we
will be able to diagonalize this Hamiltonian and find the eigenvalues and eigenvectors.

In order to be able to carry out this procedure in practice for a large number of spins,
we have to impose that all dimensions dn � D, where D is fixed (say, of the order of few
hundreds). We will call D the bond dimension. Otherwise we will run out of computer
resources. Note that if we always take dn = dn−1d1, we will end up with the original Hilbert
space of all the spins, H⊗N

1 . Although we will have made no approximation, dn will grow
exponentially with N, and thus the problem will be untractable as soon as we have few tens of
spins.

Before giving explicit recipes about how to properly choose the subspaces at each step,
and how to determine the final Hamiltonian, let us show what will be the structure of the
eigenvectors of the approximate Hamiltonian HN. Let us start with H2, and write an arbitrary
orthonormal basis, {|β〉2}d2

β=1, in this subspace as

|β〉2 =
d1∑

n1,n2=1

B
n1,n2
β |n1〉1 ⊗ |n2〉1. (1)

Here, Bn1,n2
α are the coefficients of the basis vectors in terms of the original basis vectors

|n〉 ∈ H1. We can always express

B
n1,n2
β =

d1∑
α=1

A[1]n1
α A[2]n2

α,β (2)

where A[1]n1
α = δn1,α and A[2]n2

α,β = B
α,n2
β . The orthonormality of the vectors (1), together

with their definitions, implies that

d1∑
n1=1

A[1]n1
α Ā[1]n1

α′ = δα′,α,

d1∑
α,n2=1

A[2]n2
α,βĀ[2]n2

α,β ′ = δβ ′,β , (3)

7
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where the bar denotes complex conjugate. We can now write any orthonormal basis in H3 in
terms of linear combinations of vectors |β〉2 ⊗ |n3〉, and proceed in the same way iteratively.
After M steps, we have the relation

|β〉M =
dM−1∑
α=1

d1∑
nM=1

A[M]nM

α,β |α〉M−1 ⊗ |nM〉1. (4)

The orthonormality condition implies
∑
α,nM

A[M]nM

α,βĀ[M]nM

α,β ′ = δβ ′,β . (5)

Substituting recursively the definitions of |α〉k in (4), we can write

|β〉N =
d1∑

n1,...,nN =1

(
A

n1
1 A

n2
2 . . . A

nN

N

)
β

|n1, n2, . . . , nN 〉. (6)

Here, we have defined a set of matrices An
M ∈ MdM−1,dm

with components
(
An

M

)
α,β

:= A[M]nα,β

which, according to (5), fulfil

dM∑
n=1

A
n†
MAn

M = 1, (7)

i.e. A’s are isometries. More specifically, when considering the matrix V, of indices

V(n,α)β = An
α,β, (8)

where (nα) is taken as a single index, V †V = 1. Note that, since A
n1
1 are (row) vectors and the

rest of A’s are matrices, the product A
n1
1 A

n2
2 . . . A

nN

N is a vector, from which we take the βth
component in (6). The elements of the orthonormal basis in HN , and therefore all the vectors
therein, can be expressed in the form (6): their coefficients in the original basis |n1, . . . , nN 〉
can be written as product of matrices. Vectors of that form are termed matrix product states
[15] due to their structure. In particular, any state in the coarse-grained subspace is an MPS
which we will write as

|�〉N =
d1∑

n1,...,nN =1

A
n1
1 A

n2
2 . . . A

nN

N |n1, n2, . . . , nN 〉. (9)

Here, A
nN

N is a (column) vector fulfilling (7), i.e.

d1∑
n=1

dN−1∑
α=1

∣∣(An
N

)
α

∣∣2 = 1. (10)

Every MPS is invariant under the exchange of An
M → XM−1A

n
MX−1

M , where X are non-
singular matrices, as it can be checked by direct inspection of (9). This gives us the possibility
of choosing a gauge, and thus impose conditions to the matrices A which simplify the further
calculations, or which give a physical meaning. In our case, we can consider (7) as a gauge
condition which implements such a choice and makes a direct connection between MPS and
the renormalization group method.
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2.1. Expectation values

The whole renormalization procedure is completely determined by the matrices An
M ∈

MdM−1,dM
. Before giving different prescriptions on how to determine them, we will show

how to calculate expectation values of different observables [14]. Let us consider first
X = σ1 ⊗ σ2 ⊗ . . . σN , where sigmas are operators acting on H1. Using (9), we have

〈�|X|�〉 =
d1∑

nk,mk=1

∏
k

〈mk|σk|nk〉Cn1,...,nM,m1,...,mN
. (11)

Here,

Cn1,...,nM ,m1,...,mN
= A

n1
1 . . . AnN Ā

m1
1 . . . Ā

mN

N = (
A

n1
1 ⊗ Ā

m1
1

)
. . .

(
A

nN

N ⊗ Ā
mN

N

)
. (12)

Defining

EM [σM ] :=
d1∑

n,m=1

〈m|σM |n〉An
M ⊗ Ām

M, (13)

we have

〈�|X|�〉 = E1[σ1]E2[σ2] . . . EN [σN ]. (14)

Thus, the expectation value has a very simple expression: it is itself a product of matrices4.
Typically, one is interested in few-body correlation functions, in which case most of σ ’s are the
identity operator. For those cases we will denote E[1] =: E. In particular, the normalization
of |�〉 can be written as 〈�|�〉 = E1E2 . . . EN = 1. This can be readily checked by using
(3) and (13) and writing the vector E1 as (�1|, where

|�M) :=
dM∑
α=1

|α, α), (15)

and |α) are orthonormal vectors5. Besides that the orthonormality condition (5) immediately
implies (�M−1|EM = (�M | and thus E1E2 . . . EN = 1 (cf (10)).

2.2. Real-space renormalization group

One of the simplest prescriptions to carry out the renormalization procedure is to choose the
orthonormal basis |β〉M as we proceed [1, 5]. Since we are interested in the low-energy sector
of our Hilbert space at each step, HM , the natural choice is to take the dM lowest energy states.

This construction becomes simpler if we have a Hamiltonian with nearest-neighbor
interactions only, i.e.

H =
N∑

M=2

hM (16)

where hn acts on spins M − 1 and M, i.e.

hM =
∑

k

h̃
k,l
M σ k

M−1 ⊗ σ l
M. (17)

4 Note that E1 and EN are a row and a column vector, respectively, and the rest matrices.
5 Note that they are in the space where the matrices A act, and not in the Hilbert spaces H corresponding to the spins.
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We start out by choosing as |β〉2 the d2 eigenstates of h2 with the lowest energy, e2
β . We can

write

h2 �
d2∑

β=1

e2
β |β〉〈β|. (18)

In the Mth step, once we have determined the basis |β〉M−1 in the previous one (M > 2), we
write

HM =
M∑

n=2

hn (19)

in the basis |β〉M−1 ⊗ |nM〉. This is very simple, since we already have up to hM−1 from the
previous step, and we thus just have to do that for hM. Inspecting (17) it is clear that, apart
from the matrix elements of σ l

M in the basis |n〉, we just have to determine the matrix elements
of any operator acting on the (M − 1) spin in the basis |β〉M−1. But this can be done right
away, since

〈β ′|σ |β〉 =
d1∑

n=1

dM−2∑
α=1

〈m|σ |n〉(An
M−1

)
α,β

(
Ām

M−1

)
α,β ′ . (20)

Once we finish this procedure we will end up with an orthonormal basis in HN , which should
reproduce the low-energy sector of the Hamiltonian H.

2.3. Density matrix renormalization group

Starting from the previous discussion, we know that any real-space renormalization procedure
will give rise to an MPS. Thus, the best approximation to the ground state of our Hamiltonian
will be obtained using a variational principle. That is, by minimizing the energy e = 〈�|H |�〉
with respect to all MPS of the form (9). For that, we can just use expression (14) and write

〈�|H |�〉 =
N∑

M=2

∑
k,l

h̃
k,l
M E1E2 . . . EM−1[σ k]EM [σ l]EM+1 . . . EN . (21)

This formula explicitly shows the dependence of the energy on the matrices An
M , and thus, in

principle, can be used to determine those matrices which minimize it. One possible strategy is
to minimize sequentially with respect to all possible A’s. That is, we fix all An

M for M > 2, so
that (21) is a function of An

2 only6. This functional dependence appears only in E2 and E2[σ k].
Actually, if we write (21) explicitly in terms of

(
An

2

)
α,β

, we see that such a dependence is
quadratic. We also have to impose the normalization condition (7), which in turn implies
the normalization of |�〉, and which gives quadratic equations on those coefficients as well.
Thus, minimizing the energy at this point consists of minimizing a quadratic polynomial with
quadratic constraints. Once we have An

2, we minimize with respect to An
3 by fixing the rest of

A’s. We proceed in the same vein until we reach An
N . At this point, we continue with An

N−1
and so on. That is, we sweep the spins from left to right, to left, etc, determining at each step
the matrices associated with that particular spin. At each step, the energy is smaller or equal
than the one considered in the previous step. This can easily be understood since at that step
we do not vary the matrices A at the site we are minimizing, and we will obtain the previous
energy. Thus, minimizing with respect to A’s cannot increase the energy. Consequently, this
procedure must converge to a minimum of the energy7.

6 Note that An
1 is always fixed.

7 This can be a local or a global minimum.
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More specifically, each step consists of minimizing 〈�|H |�〉/〈�|�〉. Both numerator
and denominator are quadratic functions of An

m if we fix the rest. That is, if we write a long
vector xM containing all the coefficients of A1

M,A2
M, . . . , A

d1
M , we can write

e = x
†
MHMxM

x
†
MNMxM

, (22)

where HM and NM can be determined using (21). It follows from the hermiticity of H that
HM is hermitian. Furthermore, NM is positive semidefinite (as the norm of a vector must be
non-negative). Thus, e is real and its minimum can be determined through the generalized
eigenvalue equation

HMxM = λNMxM, (23)

where one has to choose the minimum λ fulfilling that. From this equation, we also determine
xM and thus An

M . The only drawback is that the matrix NM may be ill-conditioned, something
which may pose some problems when solving equation (23).

There is a way to circumvent this misfortune and, at the same time, simplify the algorithm
further. As mentioned above, we have that (�M−1|EM = (�M |, a fact that can be used to
simplify equation (21). Actually, we could have started our renormalization procedure from
the Nth spin in decreasing order. In that case, instead of (5) and (7) we would have had
EN = |�1),

dM∑
n=1

An
MA

n†
M = 1, (24)

and thus EM |�M+1) = |�M). This suggests a mixed strategy, where we renormalize in
increasing order up to the spin M − 1, and in decreasing one up to M + 1, whenever we are
minimizing the energy in site M. In this case we have

〈�|�〉 = E1 . . . EM−1EMEM+1 . . . EN = (�|EM |�)

=
dM−1,dM∑
α,β=1

d1∑
n=1

∣∣(An
M

)
α,β

∣∣2
. (25)

That is, the matrix NM is simply the identity matrix, and therefore equation (23) becomes
a standard eigenvalue equation. Once we have determined An

M by solving it, and if we are
going to minimize next the matrices at site M + 1, we write An

M = Un
MX, where Un

M is an
isometry (i.e. fulfils (7), cf (8)). For instance, we define V according to (8), and use the
singular value decomposition to write V = UDW , where U and W are isometries and D � 0
is diagonal, i.e. X = DW . We can now discard X and keep Un

M for site M, since we can always
take An

M+1 → XAn
M+1, so that the state |�〉 remains the same. Given that we are going to

optimize now anyway with respect to An
M+1, we can ignore the multiplication by X. In this way,

we make sure that (�M−1|EM = (�M |, which is consistent with our procedure. In case we are
going to minimize next the matrices at site M − 1, we just have to decompose An

M = XUn
M ,

where now Un
M fulfils (24). Apart from that, it is numerically convenient to store the values

of Ek[σ ]Ek+1[σ ′]Ek+2 . . . EM−1 and EM−1[σ ], for σ ’s that appear in the Hamiltonian, and
update them when we have determined An

M . Besides, one should also store those of the
form EM+1 . . . Ek−1Ek[σ ]Ek+1[σ ′] as well as EM+1[σ ], since they will be needed in future
optimizations.

The algorithm carried out in this way is (up to minor modifications) the celebrated density
matrix renormalization group algorithm introduced by White in 1991 [3, 4]. The only minor
differences are (i) he optimized two sites at the same time, say M and M + 1 and from there

11
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(a)

(b)

(c)

Figure 1. Construction of an MPS in terms of entangled auxiliary particles. (a) Original spin
system; (b) we replace each spin by two auxiliary particles (except at the ends of the chain), which
are in a maximally entangled state with their neighbors; (c) the final state is obtained after mapping
the state of each pair of auxiliary particles locally onto the original spins.

he determined An
M by using a singular value decomposition; (ii) he proposed a method to

determine the initial configuration of A’s by growing the number of spins until the desired
value N is reached. Furthermore, he derived his algorithm from a very intuitive method in
which he described the effect of the rest of the spins on any given one in the normalization
in an efficient way. In any case, the present discussion highlights the variational character of
(the finite version of) DMRG [10].

2.4. Matrix product states and projected entangled pair states

The MPS can also be introduced from a different perspective, which highlights their
entanglement content and is amenable to several generalizations. The idea is to extend
the AKLT construction [12], where one substitutes the original spins by couples of auxiliary
systems in a prescribed state, and then projects their state back to the spin Hilbert space
[43, 44].

For the definition and construction of the state, we imagine that for each site of the spin
chain, M, we have two ancillas, lM, rM, with corresponding Hilbert spaces of dimensions dM−1

and dM, respectively (see figure 1(a)). For M = 1 (M = N ) we have only one ancilla r1 (lN).
The state of the ancillas is fixed: they are maximally entangled to their nearest neighbor (see
figure 1(b)). That is, rM−1 and lM are in a state |�M−1).8 Now, in order to recover the MPS,
we map the state of the ancillas onto the one of the spins at each site (figure 1(c)). That is, we
write

|�〉 = P1 ⊗ . . . PN |�1) ⊗ . . . |�N−1) (26)

where PM : HM−1 ⊗ HM → H1. We write each of those maps in the bases we have chosen
for each Hilbert spaces

PM =
d1∑

n=1

dM−1∑
α=1

dM∑
β=1

(
An

M

)
α,β

|n〉(α, β|. (27)

It is a simple exercise to show that, indeed, the state defined in (26) coincides with that of (9).
Thus, MPS can be obtained by projecting entangled pairs of ancillary particles onto the spaces
of the spins, and thus the name one-dimensional PEPS.

This construction allows us to derive a variety of the properties of MPS right away. First of
all, if we consider the reduced density operator, ρ1,2,...,M , of the first M spins, its rank (number
of non-zero eigenvalues) is bounded by dM. The reason is that the original state of the ancillas

8 We have used | . . .) to denote states on the Hilbert space of the ancillas. As it will be clear, this is a natural choice
in view of our definition (15).
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obviously fulfils that condition, and that the rank cannot increase by applying any operator, in
particular P1 . . . PM . This implies that the von-Neumann entropy S(ρ1,2,...,M) � log2 dM ,9 i.e.
the entropy of a block of contiguous spins is bounded by the maximum value of dM. The fact
that the entropy of a block of spins is bounded (for infinite chains), it is sometimes referred to
as the area law, as mentioned in the introduction.

Apart from that, we can also prove that any spin state can be written as an MPS. For
that, consider that lM (rM) is, in turn, composed of N − M + 1 (N−M) spins, as sketched in
figure 1. Now, for M > 1 the map

PM = (�2|⊗N−M ⊗
d1∑

n=1

|n〉(n| (28)

teleports [74] the state of the first N − M spins of lM to rM+1, while leaving the last one as the
physical spin. By choosing

P1 =
∑

|n〉(�n| ⊗ (n| (29)

where |�n〉 =1 〈n|�〉, we have the desired result.

2.5. Translationally invariant systems

We mention now the possibility of dealing with systems with periodic boundary conditions
corresponding, for instance, to translationally invariant Hamiltonians. An MPS which
automatically fulfils this condition is the one in which the matrices A at different sites are the
same. In that case, we can write

|�〉N =
d1∑

n1,...,nN =1

tr[An1An2 . . . AnN ] |n1, n2, . . . , nN 〉. (30)

This class of states, in the limit N → ∞, appeared even before the name MPS was coined,
and were called finitely correlated states [14]. They were introduced when extending the 1D
version of the AKLT model [12], whose ground state is the most prominent example of a state
in that class. They were also viewed as a systematic way of building translationally invariant
states [14]. States with different matrices were not considered at that time since the emphasis
was given to infinite translationally invariant spin chains. Note also that any translationally
invariant state may be written in this form [17].

The matrices EM =: E now coincide and E is called the transfer matrix, given the
analogy of the formulas with those of classical statistical mechanics. Its eigenvalues reflect
the correlation length and other properties of the system. This can be understood since if
we consider the two-spin (connected) correlation functions at distance L, the matrix EL will
appear in the calculation. In the limit L  1 only the largest eigenvalues of E will give a
contribution to the correlation function, which will thus decay exponentially. Thus, the name
finitely correlated states is used for states of the form (30) in the limit N → ∞ [14].

Let us show that, without loss of generality, we can impose the Gauge condition (7). For
that, we denote by X the operator corresponding to the largest eigenvalue λ (in absolute value)
of the following eigenvalue equation:∑

n

A†nXAn = λX. (31)

9 We take S(ρ) = −tr[ρ log2 ρ].
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One can can always choose λ = 1 by rescaling and X = X† > 0. Then the matrices
Ãn := X1/2AnX−1/2 are well defined, correspond to the same state as that of An, and fulfil the
Gauge condition.

We consider now the renormalization procedure in this particular case. Instead of
performing that step by step, as explained above, we can aim at minimizing the energy
directly within the MPS of the form (30). For that, we just have to specialize (30), and
consider a single term in the Hamiltonian (17) given the translational symmetry, i.e.

〈�|H |�〉
〈�|�〉 = N

∑
k,l

h̃
k,l
M

tr(E[σ k]E[σ l]EN−2)

tr(EN)
. (32)

Note that, as opposed to the previous case (where we had open boundary conditions), the
Gauge condition does not guarantee that the state |�〉 is normalized. The energy so defined
is a function of A’s, so that we can aim at minimizing this expression directly. The latter
simplifies in the limit N → ∞ if the maximum eigenvalue of E is not degenerate:

lim
N→∞

〈�|H |�〉
N〈�|�〉 = 1

λ

∑
k,l

h̃
k,l
M 〈L|E[σ k]E[σ l]|R〉. (33)

Here |L〉 and |R〉 are the right and left eigenvectors corresponding to the maximum eigenvalue
λ

E|R〉 = λ|R〉, 〈L|E = λ〈L|. (34)

Here we have not imposed the Gauge conditions, in which case we would have λ = 1. The
minimization of (33) with respect to An can now be performed directly, e.g. using conjugate
gradient methods.

The variational method exposed above was first proposed by Rommer and Ostlund in
the context of DMRG [7, 75] (see also [8]). They realized that, in the infinite version [3], if
N → ∞, the fixed point of the DMRG procedure will correspond to an MPS with all matrices
equal (i.e. a finitely correlated state). Then they suggested to take those states as variational
states and minimize the energy using standard methods. Alternatively, one may perform the
minimization by using evolution in imaginary time applied to an infinite system [76]. It is not
strictly necessary to take all the matrices A identically (i.e. . . . AAAA . . .) [71], but it may be
more convenient to alternate two kinds of matrices (i.e. . . . ABAB . . .) [76]. Note that this
case would be included if we group pairs of neighboring spins and take identical matrices in
each group (CCCC . . .), since this covers the previous case if we take C = AB. In practice,
however, the latter approach may be less efficient numerically since one has to deal with larger
spins.

2.6. Graphical representation

When using many-particle quantum states, we reach very soon a cumbersome level of notation.
This is not an exception when we utilize the language of MPS, since we typically have products
of many matrices, which depend on another index that corresponds to each individual spin.
As soon as we express expectation values of observables, the notation gets very involved.
There is a simple way of conveying the same information by using a graphical representation
of MPS, which we will introduce here and that will be used in the following sections. For
that, let us consider A’s describing the MPS as a rank-three tensor (An

α,β of indices n, α, β), as
shown in figure 2(a). These tensors are contracted along the indices α, β to form the matrix
product state (figure 2(b)). More precisely, 〈n1, . . . , nN |�〉 is obtained after this contraction,
where the indices n are still open. We can thus represent the MPS as the tensor of figure 2(c).
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(a) (b)

(c)

(d)

(e)

f

f

g

g

Figure 2. Graphical representation of an MPS in terms of contracted tensors (tensor network).
(a) The set of matrices An are represented in terms of a rank-three tensor where the index n
is pointing vertically; (b) we consider the set of tensors corresponding to each spins and (c)
contract them according to the horizontal indices; (d) the same can be done with periodic boundary
conditions by adding an extra bond on the end spins; (e) tensor representation of an operator acting
on a spin; (f .1) in order to calculate 〈�|�〉 we contract the tensor corresponding to � with that of
�̄, giving rise to (f .2) a row of tensors which are contracted to give a number. The tensors can be
viewed as matrices (one double-index to the left and another to the right). (g.1) and (g.2) are the
same but with an expectation value.

If the first and the last objects are also rank three tensors, we will have the representation of
figure 2(d), which in turn describes, e.g. a translationally invariant state. Any local observable,
σ , can be represented as a tensor itself, if we write it in the spin basis (figure 2(e)).

The norm of the state can be obtained by tracing the tensor with respect to the spin indices.
This is represented in figure 2(f 1), where the upper part represents 〈n1, . . . , nN |�〉 and the
lower the complex conjugate, and the indices n are contracted. By considering each pair of
tensors A and Ā on top of each other, we can build the matrix E[1] defined in (13), and thus
represent the norm as the contraction of those matrices (figure 2(f .2), cf (14)). In the same
way, we can represent expectation values of product of local observables (figures 2(g.1) and
(g.2)).

2.7. Sequential generation of matrix product states

So far we have seen that the family of MPS corresponds to those that appear in real space
renormalization schemes. Here we will show that they also coincide with the states that can be
sequentially generated [59]. For that, let us assume first that we have an auxiliary system, i.e
an ancilla (which, in practice, could be a D-level atom) with Hilbert space Ha of dimension D,
initially prepared in state |1〉, and also all the spins in the chain in state |1〉. Now we consider
a unitary operation between the ancilla and the first spin, then between the ancilla and the
second one, and so on, until the ancilla interacts with the last spin (see figure 3(a)). Let us
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(a)

(b)

(c)

Figure 3. Sequential generation of MPS. (a) Using an ancilla with Hilbert space of D dimensions,
we act sequentially on the first, second, etc spins with unitary operators; (b) this process can be
understood with the graphical language introduced before. After each interaction, the spins get
entangled in an MPS with the ancilla itself. (c) We can replace the ancilla by the log D spin which
are to the right of the spin we are acting on.

denote by U(A,M) the unitary operation between the ancilla and the nth spin. If we now denote
by |α) an orthonormal basis in the ancilla Hilbert space, and write

U(A,M)|0〉1 =
D∑

α,β=1

∑
n=1

A[M]nα,β |n〉1|α)(β|, (35)

then we end up with the state

|�〉N =
d1∑

n1,...,nN =1

(
A

n1
1 A

n2
2 . . . A

nN

N

)
β

|n1, n2, . . . , nN 〉|β). (36)

In figure 3(b) we have used the representation introduced above to describe this process and
to arrive at the above formula.

From equation (36) it also immediately follows that any MPS can be created sequentially
using an ancilla, by simply choosing U(A,M) according to (35), and the last one in such a way
that A

nN

N is a vector (i.e. it only has one component β = 1). Besides, we can substitute the
ancillary particle at each step by L � logd1

D spins which lie on the right of the particle we are
acting on, since they span a Hilbert space which has dimension of at least D. Once we apply
UA1 to the first L + 1 spins, we can swap the state of the spins 2, . . . , L + 1 to 3, . . . , L + 2 by
using a unitary operation acting on spins 2, . . . , L + 2. Now we can use the spins 3, . . . , L + 2
as the ancilla, and apply UA2 to the second spin as well. Proceeding in this way, we see that
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we can also prepare any MPS by a sequence of unitary operations from left to right, each of
them acting on at most L + 1 spins (see figure 3(c)).

2.8. Approximating states with matrix product states

Given a state, |�〉, expressed in a given basis, how do we find its MPS representation? This
is very simple in theory, since we just have to follow the procedure of the renormalization,
but keeping all the states that are necessary. We can do that as follows. We first consider the
reduced density operator of the first spin, ρ1 = tr(|�〉〈�|), and a basis, say |β〉1, where it
is diagonal. Then we consider the first two spins, and do the same with the reduced density
operator ρ2, determining a basis |β〉2. Obviously, we can write (1). We continue in the same
way, so that at the end we can write the state |�〉 as in (6), and thus as an MPS.

This procedure, in general, will not work with a large number of particles since we will
have to diagonalize matrices (ρM ) of dimensions that grow exponentially with the number of
spins, and thus the matrices A will also be too large to be handled. (Note that if the rank of all
operators ρM is smaller than some fixed number, say D, the procedure will express the state as
an MPS with maximal bond dimension D. In other words, any state can be written as an MPS
of bond dimension equal to the maximal rank of the reduced density operators ρM .) One way
to circumvent this problem is to look for a good approximation to the state |�〉 in terms of an
MPS, |�〉. One can do that using the same idea as the renormalization procedures presented
above.

• Real-space-like approximation [77]. Here, every time we diagonalize ρM , we only pick
D states |α〉M , those eigenvectors corresponding to the D largest eigenvalues of ρM . In
this way, as in the real-space renormalization procedure, we try at each step to be as close
as possible to the state |�〉.

• DMRG-like approximation [47]. Instead of trying to optimize locally, at each step, the
subspaces we select in order to represent �, we can do something better. The inspiration
comes from DMRG, where one does not perform an optimization locally, but more
globally. We can do the same thing here, i.e. to obtain A’s that approximate the state
|�〉 variationally, so that they provide the best possible approximation. In practice, this
means that we maximize |〈�|P |�〉|, where P = |�〉〈�|. This minimization is, in turn,
similar to the minimization of the energy of the ground state of H, cf equation (21). Thus,
we can follow the same procedure, namely sequentially minimize with respect to each of
A’s fixing the rest.

The procedures exposed above will be still hard to implement in practice, due to the fact
that we still have to deal with too many parameters (those describing |�〉). However, if that
state is initially written in an MPS form (of matrices with a large but fixed bond dimension,
D) or in a superposition thereof with few terms, then we will be able to do that in practice,
since all the operations can be made efficiently. For example, the term |〈�|P |�〉| will be a
polynomial of second degree in the coefficients of each particular A[M] that can be easily
determined.

The above procedure can be used to simplify and compress an MPS description. For
instance, imagine we have an MPS with matrices A of dimension D. The goal is to find
another MPS which is very close to that one, of matrices B with a smaller dimension, D′.
In practice, this technique can be used for many purposes, for example, to approximate the
evolution of an MPS under the action of a Hamiltonian of the form (16), or some quantum
gates. The idea in this case is to apply the evolution operator for a short time, such that we
can determine the evolution after this step (using, e.g. perturbation theory or neglecting terms
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that do not commute in the Hamiltonian), and then approximate that state with an MPS of a
fixed dimension. The real-space approximation explained above gives rise to the celebrated
time evolving block decimation (TEBD) algorithm [63–66], whereas the optimal DMRG-like
one was presented in [47].

2.9. Matrix product operators

In the same way one defines MPS, one can define operators which can be written in terms of
products of matrices, the so-called matrix product operators (MPOs) [47]. They are of the
form

X =
d1∑

n1,...,nN =1

tr
(
B

n1
1 B

n2
2 . . . B

nN

N

)
On1 ⊗ On2 . . . ⊗ OnN

. (37)

Here, {On}d
2
1

n=1 forms a basis in the space of operators acting on H1. For instance, we may take
Onn′ = |n〉〈n′|.

A class of operators that can be easily written as MPOs is Hamiltonians with short-range
interactions. The idea is to realize that the space of operators acting on each spin is itself a
Hilbert space (now of dimension d2

1 ), so that all the properties of MPS directly apply to MPOs,
and this allows us to write the Hamiltonian as a simple MPO. In order to do that explicitly, let
us write |k〉 = σ k with |1〉 = 1, so that hM defined in (17) becomes

hM = |1〉 ⊗ . . . |1〉 ⊗
[ ∑

k

h̃
k,l
M |k〉M−1 ⊗ |l〉M

]
. . . ⊗ |1〉. (38)

From this expression it becomes apparent that hM can be written as an MPS with bond
dimension, D � d2

1 : when considering H, we can take it as a sum of three terms, those
corresponding to M < M0, M > M0 and M = M0. When writing the analog of the reduced
density operator, ρM0 , for H, we see that both the first term and the second one will just give
a contribution of 1 to its rank, whereas the third one gives at most d2

1 − 2(d1 − 1). (Note that
we can include the terms with k = 1 or l = 1 in hM0∓1, respectively.) Thus, H can be written
as a MPO with bond dimension D � d2

1 − 2d1 + 3. If we write the Hamiltonian (or any other
operator) in this form, one can determine expectation values with MPS in a very efficient way
(compare (14)):

〈�|X|�〉 = Ẽ1Ẽ2 . . . ẼN , (39)

where

ẼM =
∑
n,m,k

An
M ⊗ Bk

M ⊗ Ām
M〈m|Ok|n〉. (40)

This provides an alternative way of determining expectation values of the Hamiltonian, and
thus to carry out DMRG calculations.

Another class of operators for which the MPO description is useful is the one of density
operators, ρ, describing the full spin chain. Those are self-adjoint and positive semidefinite,
something which is not easy to express in terms of the matrices B. However, for those we
can use the idea of purification: namely, we can always extend our spin chain with another
auxiliary one, with the same number of spins, in such a way that the state of both chains, |�〉,
is pure but when we trace the auxiliary one we obtain the original density operator, ρ [47].
We write |�〉 as an MPS

|�〉 =
d1∑

n1,...,nN =1

A
n1m1
1 A

n2m2
2 . . . A

nN mN

N |n1, n2, . . . , nN 〉|m1,m2, . . . , mN 〉. (41)
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(a) (b)

Figure 4. Comparison of the two renormalization procedures. (a) At each step, we add a new spin
(ball) to the previous system (square) obtaining a new Hilbert space, which we truncate to obtain
the one of a smaller dimension (new square). (b) At each step, we take two neighboring systems
(squares) and truncate the Hilbert space to obtain the new one of the new systems.

Thus, we obtain ρ in the form of a MPO (37) with Onn′ = |n〉〈n′| and

Bnn′
M =

d1∑
m=1

A
n,m
M ⊗ Ān′m

M . (42)

Now, we can use the methods described in the previous sections to determine the time evolution
of a density operator (either directly using the MPO description, or using the purified state).
In particular, we can describe the thermal equilibrium state as

e−βH = e−βH/21 e−βH/2, (43)

where 1 can be trivially expressed in terms of a purification. Thus, by performing the time
evolution (in imaginary time) starting from the purification of 1 up to a time t = iβ/2, we
obtain the desired MPO.

Other examples of MPOs are transfer matrices in classical systems, as well as the
monodromy matrices as appearing in the algebraic Bethe ansatz [78].

3. Tree tensor states

Another way of carrying out the renormalization procedure in one dimension is to follow
Kadanoff’s original idea [2]. Let us assume, for simplicity, that N is a power of 2. We split our
N spins into N/2 neighboring pairs. For each pair, we consider a subspace Hk

2 ⊂ H1 ⊗H1 of
dimension dk

2 . The resulting systems are paired again into N/4 neighboring couples, where
we take Hk

3 ⊂ Hk
2 ⊗ Hk

2 of dimension dk
3 , and continue in the same vein until we end up with

a single system. The comparison of this way of performing the renormalization and the one
given in the previous section is represented in figure 4.

As before, we can follow which kind of states are supported in the final subspace Hk
n.

At the second step, an orthonormal basis in Hk
2 corresponding to particles 2M − 1 and 2M

(M = 1, . . . , N/2) is

|n〉M =
d1∑

n1,n2=1

(
T 2

M

)n

n1,n2
|n1〉2M−1 ⊗ |n2〉2M, (44)
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(a) (b)

(c)

Figure 5. Tensor network representation of the TPS. (a) Each tensor T is represented by a square
with three indices. (b) The fact that T is an isometry can be represented as a line when we contract
T and T̄ . (c) A TTS.

where n = 1, . . . , dk
2 . In the ith step, we can use the same formula to express the basis in Hk

i

in terms of Hk
i−1 just by replacing T (2) by T (i). The orthonormality of the basis gives us the

condition

di−1∑
n1,n2=1

(̄
T

(i)
M

)n′

n1,n2

(̄
T

(i)
M

)n

n1,n2
= δn′,n, (45)

i.e. T must be an isometry. The final state can be easily written in terms of T (i), but we will
not do that here. Instead, we will use a graphical representation as we did in the case of MPS.

Let us start out representing the tensors T as shown in figure 5(a). The orthonormality
condition (45) can be thus graphically illustrated as shown in figure 5(b). That is, contracting
the indices n,m of the tensor with its complex conjugate gives a delta function (here represented
by a line). Any state |�〉 obtained with this renormalization scheme will have the structure
as shown in figure 5(c). That is, it will consist of different isometries T, characterizing the
truncation of the Hilbert space of pairs of subsystems, which are contracted according to the
diagram [53]. Note that we could have joined more than two spins in the first step, or in
successive steps, in which case we would have obtained a similar diagram but in which the
tensors would have more indices. One calls this class of states tree tensor states (TTS) since
the diagram resembles a tree.

By looking at the tree structure of a state (figure 5(c)) it is very easy to note that the states
may violate the area law. In fact, if we look at a block of contiguous spins, we can deform the
diagram and see how many links connect that block with the rest. Depending on where we
take the block, the number may vary. In the figure, for instance, if we take a block with spins
2M − 1 and 2M , then they will be connected by a single bond to the rest of the spins. If we
take instead the spins 2 and 3, they are connected by two bonds to the rest. It is easy to realize,
as in the case of MPS, that the entropy of the block is bounded by the sum of the logarithms of
the dimension of the bonds that connect the block with the rest. For some block, this entropy
is bounded by a constant, whereas for some other ones it is bounded by c log L, where L is
the number of spins in the block. Thus, a TTS violates the area law, although only mildly. In
fact, given that critical systems typically have a logarithmic correction to the area law [36], it
is natural to try to describe them with TTS, and thus with the renormalization group procedure
exposed here, as it is usually done.
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(a) (b)

(c)

Figure 6. Expectation values of observables in a TTS. (a) Contraction of the TTS with an
observable and its conjugate. (b) Using the fact that T’s are isometries we can get rid of several
boxes (tensors); (c) reordering the indices we obtain a product of matrices.

3.1. Expectation values

Expectation values of observables in a TTS can be easily evaluated, as it was the case
for MPS. Let us take, for example, an observable acting on a give site, i.e. 〈�|σ |�〉.
We can write this expectation value as a contraction of two TTS, � and �̄, in which the
operator σ is sandwiched in between (figure 6(a)). Using the fact that all T’s are isometries
(i.e. figure 5(b)), we can heavily simplify the structure of this contraction. For example, in
the figure the tensors on the right which are in a dimmer color can be substituted by straight
lines, so that we obtain the tensor contraction shown in figure 6(b). Now, by redrawing it we
obtain the one shown in figure 6(c), which can in turn be written as a product of matrices, as it
was the case with MPS. When we have a product of local observable, we can follow the same
procedure. Just by having a look at the diagram, we can eliminate some of the tensors and
replace them by lines, obtaining at the end a simple structure which can be easily contracted.

3.2. Renormalization group

As before, we can build a specific way of performing the renormalization, which is nothing
but the standard one (but in position space instead of momentum or energy space). As in the
case of the real-space renormalization group reviewed in the previous sections, the simplest
method consists of trying to minimize the energy every time we perform a renormalization
step.

Let us consider a Hamiltonian of the form (16). (We could take other Hamiltonians with
longer range interactions, but for illustration purposes we take the simplest one.) First, we take
h1, acting on spins 1 and 2, and determine the subspace of dimension dk

2 with lowest energy.
That is, we diagonalize h1 and take the subspace spanned by the dk

2 lowest eigenvalues. The
projector on that subspace defined the isometry T

(2)
1 . We do the same with h3, h5, etc. Then

we project the whole Hamiltonian onto the subspace (which is build as a tensor product of
the selected ones), obtaining a new Hamiltonian with nearest-neighbor interactions only. The
reason is that the projection of h2M−1 is supported on the subspace of the new particle M,
whereas h2M is on that of particle M and M + 1 only. If we continue in this way, we will
obtain a renormalized Hamiltonian at each step. The ground state of the final Hamiltonian
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will thus have the structure of a TTS. Furthermore, this procedure may converge to a particular
Hamiltonian, at least if we consider translationally invariant systems, and which is the fixed
point operator of the renormalization group flow. This is the one which one usually analyzes
in the renormalization group to determine the possible phases depending on the different
constants parameterizing H.

Of course, one may go beyond this procedure and try to minimize the energy directly as
a function of all the tensors appearing in the tree, in much the same way one does in DMRG
[79–82]. In fact, one can use similar techniques to those introduced in that context in order
to perform this task in an efficient way. For instance, one may fix all T’s except for one, and
minimize the energy with respect to that one. Then proceed with the next, and so on, until all
the tensors (and thus the energy) converge. One can also choose all the tensors in a row equal,
in order to emulate translationally invariance (this will occur anyway with the renormalization
procedure given above for Hamiltonians with that symmetry), at the expense that one has to
minimize with respect to all the tensors in one row at the same time. Furthermore, one may
look for quasi-scale invariant solutions, in which all the tensors are chosen to be the same.
Note, however, that unlike the case of MPS the state is not translationally invariant, since
the spins are treated on different footing. That is, two spins that lie next to each other may
not be grouped until the final step of the renormalization procedure. This indicates that this
method may give good qualitative results (in most of the times, enough to determine the phases
appearing in the problem), although not as precise as in DMRG.

3.3. Matrix product states versus tree tensor states

Given an MPS it is relatively simple to express it as a TTS. One way of seeing that is by
considering the sequential generation of MPS explained in the previous sections. There, we
saw that an MPS of bond dimension D can be generated by using a sequence of unitary
operators acting on log D + 1 spins (see figures 4 and 7). If we group log D spins into a
single one, so that the new chain has N/ log D big spins, those unitary operations become
between nearest neighbors only. Now, let us consider the last of such spins. Obviously,
there exists a unitary operation acting on it and the previous one that disentangles it from the
whole chain (such unitary is the inverse of the one we apply in the sequential operation). The
same applies to any big spin, since we can consider it as the last one of a sequentially generated
state (we could start from the next one, go around the rest of spins and end up in that particular
one). This implies that we can, for example, act on every second big spin of the chain and its
neighbor to the left with a unitary operation and disentangle them completely from the rest (see
figure 7). The remaining state of the rest of the spins will still be an MPS with bond dimension
D, so that we can apply exactly the same procedure. By iterating, we can completely
disentangle all the big spins. The procedure we have carried out is nothing else but the
one described at the beginning of this section, but with the big spins. This means that the
state of the big spins can be written as a TTS, and thus the original one too. The opposite is
also true. Given a TTS we can always use the procedure described in the previous sections to
write it as an MPS. As discussed above in the context of the area law, the maximal rank of the
density operators ρM will be O(log N), and thus this determines the largest bond dimension,
D, of the MPS.

3.4. Other remarks

It is very clear that one can apply the same techniques described in the previous section for
MPS to TTS. For example, one can minimize the energy, determine the best approximations,
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(a)

(b)

(c)

(d )

Figure 7. An MPS can be expressed as a TTS. (a) We group log D spins to build bigger spins
(b), which are entangled and form an MPS of bond dimension D. (c) Unitary operators acting on
pairs of spins disentangle half of them, and leave the rest in an MPS of bond dimension D. We can
continue this procedure until we have a single spin.

time evolution, etc, by getting the tensors T of the TTS variationally, going one by one (while
fixing the rest), as in DMRG. The only point where one has to be careful is that, in this case,
the fact that each T must be an isometry plays an important role. In principle, the minimization
of the energy, etc, for each tensor should take this constraint into account. However, as it
was in the case of MPS, one can ‘pull’ this constraint so that in practice it is irrelevant. The
idea here is to perform the minimization in some particular order. Let us take a position in
the first row, fix the rest and find the optimal tensor at that position (without imposing the
isometry condition). Then we determine a singular value decomposition of the tensor between
the upper index and the other two, keeping at the end only the isometry. That is, we pull
the non-isometric part upward, and include it in the next tensor. Thus, at the next step, we
minimize with respect to the tensor above the one before and continue in the same way until
we reach the uppermost position. Then we go again to the first row and repeat the whole
procedure until we converge. Apart from that, we can also define tree operators in analogy
with matrix product operators, and thus carry out calculations at finite temperature or with
mixed states.

It is interesting to view what happens if we apply the renormalization group procedure
reviewed in this section to a finitely correlated state. In that case, one can solve the problem
exactly and classify the fixed points of that procedure, obtaining the states that survive it [114].

4. Multiscale entanglement renormalization ansatz

A more sophisticated way of implementing a real-space renormalization group was introduced
by Ma and Dasgupta [83], and later successfully used by Fisher [84, 85] in the context of
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(a)

(b)

(c)

Figure 8. (a) Translational invariant blocking scheme a la Ma–Dasgupta–Fisher mapping four
spins to two by isometries. (b) Every building block in the scheme consists of isometries.
(c) Alternative blocking scheme as e.g. used for the Ising model mapping four spins to three.

random quantum spin systems. Their blocking scheme is peculiar in the sense that one
does not block several spins into one superspin as described before, but maps n spins into
n′ < n spins, in such a way that locality in the interactions is preserved. This constraint is of
crucial importance as it turns out that this is precisely the extra ingredient needed to extend
those block-transformation to higher dimensions such that an area law for the entanglement
entropy can be obtained. The idea of mapping n spins into n′ < n spins is also the basis
of the multiscale entanglement renormalization procedure introduced independently by Vidal
[54, 55].

To sketch this approach, let us consider a quantum spin chain with only nearest-neighbor
interactions. A typical blocking scheme of Ma–Dasgupta–Fisher in the case of Heisenberg
interactions would map four nearest-neighbor spin 1/2’s (k, k + 1, k + 2, k + 3) into two new
spin 1/2’s (k′, k′ + 1). This is done in such a way that the renormalized Hamiltonian still only
exhibits nearest-neighbor interactions. In other words, the isometry Uk′,k′+1;k,k+1,k+2,k+3 used
in the RG step has the following effect on the Hamiltonian H = ∑

k hk,k+1:

U(hk−1,k + hk,k+1 + hk+1,k+2 + hk+2,k+3 + hk+3,k+4)U
† = h̄k−1,k′ + h̃k′,k′+1 + h̄k′+1,k+4.

Such RG steps can again be implemented recursively, and this has been done with very big
success for random antiferromagnetic spin chains: the isometries U are found using standard
second-order perturbation theory, and the blocking becomes more accurate as a function of
the blocking step. In a similar way, this method has been used to simulate Ising spin systems
with random ferromagnetic interactions and random transverse fields [84, 85], in which case
four spins are mapped to three spins in such a way that the renormalized Hamiltonian only
exhibits nearest-neighbor interactions.

In analogy with the TTS, the quantum states that are generated during such a blocking
scheme can easily be represented using isometries (see figure 8). One of the most interesting
features of the class of states generated during such a RG procedure is the fact that they
can be critical and scale-invariant. Indeed, the Ma–Dasgupta–Fisher real-space RG method
has been used to extract critical exponents. By looking at the structure of isometries, one
indeed observes that the Schmidt rank when cutting the chain into two halves can grow as the
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(a)

(b) (c)

Figure 9. Multiscale entanglement renormalization ansatz: (a), (b) decomposing the isometries
in the Ma–Dasgupta–Fisher scheme into a sequence of disentangling unitaries and isometries;
(c) typical representation of a MERA as a sequence of unitaries and isometries.

logarithm of the size of the chain, as in the TTN: if one considers a periodic arrangement of the
isometries as shown in figure 8, a logarithmic number of layers of blocking steps can contribute
to generating entanglement. This has to be contrasted to the case of MPS, where the Schmidt
number with respect to any cut is always bounded by a constant. Another very important
property of the states obtained like that is that one can efficiently calculate expectation values
of local operators: using the RG-scheme, one can represent local operators in the effective
basis generated after consecutive RG-steps, and due to the exponential shrinking of the number
of spins at every step, local operators will always remain local, up to the last level of the tree
where any expectation value can trivially be calculated. More precisely, local operators will
never act on more than a constant number of renormalized spins during the renormalization
flow. This can be proven as follows: given an operator acting on xk nearest-neighbor spins after
k iterations, then there exist constants 0 < c1 < 1 and c2 > 1 that depend on the RG blocking
such that the range of the operator at the next level is bounded by xk+1 � c1 (xk + c2). One can
easily check that xn is always bounded above by max(c1.c2/(1 − c1), x0) which is a constant
independent of the number of spins. In the case of the 4 → 2 isometry, c1 = 1/2, c2 = 6
and hence the bound is max(6, x0); for a general n → m scheme, c1 = m/n, c2 =
2(n − 1).

Obviously, this class of states encompasses the class of TTS, as the latter is obtained in
the special case of n → 1 blocking schemes. However, this new class of states also shares the
lack of translational symmetry with the TTS, as opposed to the case of MPS.

Now, a crucial step can be made in order to obtain a much more powerful method. One
can choose the isometries at will, something which can lead to very different isometries than
those obtained by second-order perturbation theory. The resulting renormalization scheme
is precisely the one introduced by Vidal and the underlying states were called multiscale
entanglement renormalization ansatz (MERA) [54, 55]. This class of states was introduced by
Vidal, and his construction was inspired by ideas originating in the field of quantum information
theory of how to parameterize states using quantum circuits. He also proposed to obtain the
isometries variationally. In a typical realization of a MERA, the states are parameterized by
specifying a periodic pattern of isometries (the free parameters are exactly the isometries)
as shown in figure 9 and, furthermore, the isometries are themselves decomposed into a
sequence of so-called disentangling unitaries and isometries (see figure 9(b)). Apart from
historical reasons, the incentive for splitting the isometries into smaller building blocks is
that this allows for a more efficient calculation of local expectation values; however, the
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disentangling unitaries are already implicitly present in the Ma–Dasgupta–Fisher blocking
scheme. There is however also a very nice intuitive interpretation of the effect of those
unitaries so-called disentanglers: prior to a blocking, these disentanglers are responsible for
removing entanglement between the block and the outside.

Due to the fact that MPS can be represented as TTS and TTS are a special case of MERA,
it is clear that the class of MERA encompasses the class of MPS. As already explained in the
context of the Ma–Dasgupta–Fisher RG-scheme, expectation values of local observables can
easily be calculated by doing consecutive coarse-graining steps on the obervable of the form
Ô → U † ˆO ⊗ 1U . Due to the exponential shrinking of the number of spins, it is guaranteed
that the renormalized observables Ô remain local at all steps.

In analogy to MPS and TTS, a variational calculation can now be done as an alternating
optimization over the degrees of freedom in the state [86]. In the case of MERA, those degrees
of freedom are the isometries, but unlike the case of MPS and TTN, those optimizations cannot
be mapped to alternating least squares problems; instead, a direct optimization over isometries
has to be done, which is a nonlinear optimization problem that is more difficult and subtle
to control due to the occurrence of local minima. Nevertheless, Vidal and collaborators have
obtained impressive results, and e.g. calculated critical exponents of quantum spin chains
to a very good precision by imposing a scale-invariant structure of the MERA [87, 88].
Such scale-invariant MERA have also been studied from the point of view of real-space
RG transformations [91] and of quantum channels and quantum information theory
[89, 90]. A further development is the formulation of a real- and imaginary-time evolution
with MERA [92].

5. Higher dimensions

In principle, one can use all the previous constructions in higher dimensions. For instance,
an MPS may approximate a 2D system, if we view it as a spin chain (i.e. we place the spins
one after each other) [18–20]. However, the validity of the methods explained in the previous
sections will be questionable as soon as the system becomes sufficiently large such that it
cannot longer be viewed as a 1D one. A way of expressing mathematically this intuition is
through the area law. One expects that the entropy of a region increases with the number of
spins at the border. For an MPS, it is simple to see that there will be regions for which the the
entropy will not scale at all in that way. With TTS the same thing happens: whereas for some
regions the entropy will grow even as the logarithm of the number of spins on that regions, for
some other regions it will not grow at all. Apart from that, they will not give a translationally
invariant state, as it should be for homogeneous problems. Nevertheless, the renormalization
scheme that originates the TTS may be still applied to higher dimensional systems giving
reasonable results for sufficiently small systems [93]. The MERA can be chosen to fulfil the
area law, and thus they may be more appropriate than MPS and TTS for two and higher spatial
dimensions. The construction can be immediately adapted from the 1D one. The issue of
translational invariance still remains and thus the result may depend on how the tensors are
chosen. Besides that, the minimization with respect to the tensors composing the TPS cannot
be carried out as efficiently as with TTN, since it becomes difficult to avoid imposing the
unitarity (or isometry) condition on the tensors. In any case, the first results on a 2D frustrated
system in a 2D lattice have been recently reported, reveling a great potentiality of the method
[94].

Here we will mostly consider PEPS, which do not suffer from some of those drawbacks,
and for which it has been explicitly proven to efficiently approximate a large set of problems, as
mentioned in the introduction. The prize one has to pay is that the determination of expectation
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Figure 10. Projected entangled pair state (PEPS). As in the 1D case, each spin is replaced by four
ancillas, which are maximally entangled with their neighbors. The state is produced by locally
mapping the states of the ancillas onto the original spins.

values has to be carried out approximately, as opposed to what happens with MPS, TTS and
MERA. In practice, this does not pose a crucial problem since the error in the approximation
can be easily estimated and made arbitrarily small by increasing the computational resources.
PEPS algorithms have been recently applied to a variety of 2D problems with very promising
results for both finite [44, 95–97] and infinite [45, 98, 99] systems. We will also briefly
mention other states at the end of the section.

5.1. Projeted entangled pair states in two dimensions

We extend here the construction of MPS from a previous section to 2D [44]. For that, we
consider N spins in a square lattice. We replace every spin by four auxiliary ones (figure 10),
each of them in a maximally entangled state of dimension D with a nearest neighbor (except
for the borders). We then define a map, PM, acting on each of the sites, M, that transforms the
state of the auxiliary spins into the one of the original spins. Now, we can write the map at
site M in a particular basis, so that

PM =
D∑

α,β,γ,δ=1

d1∑
n=1

(
An

M

)
α,β,γ,δ

|n〉(〈α, β, γ, δ|, (46)

where we have used the same notation as before, but now we have fixed the dimension D to
simplify the notation. The state obtained after this procedure is called a PEPS. We can write
the PEPS in the spin bases, in which case we will have that the corresponding coefficients will
be given by the contraction of the tensors A according to the auxiliary indices (Greek letters).
This is represented in figure 11.

Given the PEPS construction, it is very simple to understand that they satisfy the area law.
First, if we look at the state of the auxiliary particles, the entropy of a region A will be equal
to the number of cuts, nA, of the entangled pairs across the border of the region times log D.
In fact, the rank of the reduced density operator will be exactly DnA . On the other hand, the
maps P cannot increase the rank of the density operator, and thus we obtain the area law for
the real spins, given that the entropy of an operator is upper bounded by the logarithm of its
rank.
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(a) (b)

Figure 11. Tensor network representation of a PEPS. (a) Representation of the tensor
corresponding to a single site. The indices in the plane correspond to the auxiliary particles,
whereas the one orthogonal is the spin one; (b) representation of the whole state where the
auxiliary indices are contracted.

(a) (b)

(c) (d)

Figure 12. Determination of expectation values with PEPS. (a) The tensor network corresponding
to the expectation value is obtained by sandwiching the observable (here at the position 2, 4) with
� and �̄. (b) We can join pair of indices in each bond to have a single one. (c) In order to contract
the resulting tensor, we observe that the first row has the same tensor structure as an MPS. Then
we contract the first row with the second, and approximate the result optimally by a set of tensors
with the structure of an MPS. (d) We do the same thing with the next row, and continue in the same
way until we find the result.

The expectation values of observables in a PEPS have a similar structure to those in an
MPS (see figure 12(a)). We have to sandwich the operator between the tensors corresponding
to � and �̄ as shown in the figure. At the end, everything boils down to contracting a tensor
of the form shown in figure 12(b). This is very hard, in general. The reason is that if we start
contracting the tensors appearing there, the indices will proliferate and in the middle of the
calculation we will have of the order of

√
N indices, which amounts to having an exponential

number of coefficients. This is very different to what occurs in 1D, in which case the linear
geometry makes it possible to contract the tensors while always keeping two indices at most.
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One way to proceed is to realize that the tensor network displayed in figure 12(b) can be
viewed as follows. The first row can be considered as a tensor which in turns is built out of
smaller tensors, in much the same way as an MPS is built out of the tensors A. The next row
can be viewed as a MPO. Thus, the contraction of the first row with the second will give rise to
a tensor like the first one but with a higher bond dimension (the square of the original one). If
we contract the next row, we will multiply the bond dimension again, and at some point it will
be impossible to proceed. Instead, what we can do is to try to approximate the first plus second
row by a tensor of the form of an MPS but with reduced dimensions (figure 12(c)). For that,
we use the technique explained in the previous sections on how to approximate states by MPS
optimally. We can now iterate this technique by adding the third row, and again decreasing
the bond dimension of the resulting tensor (figure 12(d)). In this way, we can keep all the
dimensions under control and obtain the desired expectation value. A word of caution must be
called for here. There is no guarantee that we will be able to obtain a good approximation at
the end if we decrease the dimensions of the tensors. In practice, however, we have performed
all those approximations and obtained very good results. Furthermore, one is always aware
of the error made in the contraction, since it can be determined through the procedure itself.
The reason why one obtains very accurate results in practice can be qualitatively understood
as follows. The contraction we are performing can be viewed as evaluating a kind of partition
function of a 1D quantum system at non-zero temperature. In fact, the MPO of each row can
be interpreted as a transfer operator, in much the same way as in 1D quantum (or 2D classical)
systems. If that matrix has a gap, which occurs outside the critical points, the procedure
we are carrying out will tend to give the eigenvector of the transfer matrix corresponding to
the maximal eigenvalue. If this eigenvector has an efficient representation as an MPS, then
our procedure will succeed. Even though there is no proof for that, the problem of finding
the maximal eigenvector of the transfer matrix in 1D is very reminiscent of that of finding
the ground state of a Hamiltonian, for which an MPS provides a good approximation (for
short-range interactions, although numerically it also works for longer range interactions).

Once one has an efficient algorithm to determine expectation values, one can literally
translate all the algorithms developed for MPS to PEPS. In particular, one can approximate
time evolutions, thermal states, etc, with this methods. In [71] those algorithms are explained
in great detail.

Let us now explain why PEPS are well suited to describe spins in thermal equilibrium
in the case of local Hamiltonians in any dimension. Let us write H = ∑

hλ, where hλ.
For simplicity, we will assume that each hλ acts on two neighboring spins although this can
be generalized for hλ acting on a small region. We first rewrite the (unnormalized) density
operator e−βH = trB[|�〉〈�|], where |�〉 = e−βH/2 ⊗ |�〉AB is a purification [47] and |�〉AB

a pairwise maximally entangled state of each spin with another one, the latter playing the role
of an environment. We will show now that |�〉 can be expressed as a PEPS. We consider first
the simplest case where [hλ, hλ′ ] = 0, so that |�〉 = ∏

λ e−βhλ/2 ⊗1|�〉AB . The action of each
of the terms e−βhλ/2 on two spins in neighboring nodes can be viewed as follows [43, 100]:
we first include two auxiliary spins, one in each node, in a maximally entangled state, and
then we apply a local map in each of the nodes which involves the real spin and the auxiliary
spin that ends up in |0〉. By proceeding in the same way for each term e−βhλ/2, we end up
with the PEPS description. This is valid for all values of β, in particular for β → ∞, i.e. for
the ground state. In case the local Hamiltonians do not commute, a more sophisticated proof
is required [51]. One can, however, understand qualitatively why the construction remains
to be valid by using a Trotter decomposition to approximate e−βH ≈ ∏M

m=1

∏
λ e−βhλ/2M

with M � 1. Again, this allows for a direct implementation of each exp[−βhλ/2M] using
one entangled bond, yielding M bonds for each vertex of the lattice. Since, however, the
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(a) (b) (c)

Figure 13. Representation of (a) a vertex and (b) a face matrix product ansatz. The tensors are
specified by circles, and the auxiliary indices by the lines joining them. As one can see, each
auxiliary index appears in two (a) and four (b) tensors, respectively. (c) Other tensor structures.

entanglement induced by each exp[−βhλ/2M] is very small, each of these bonds will only
need to be weakly entangled, and the M bonds can thus be well approximated by a maximally
entangled state of low dimension. Note that the spins belonging to the purification do not play
any special role in this construction.

5.2. Other approaches

For translationally invariant Hamiltonians, one may directly consider the limit N → ∞. In
that case, the PEPS is taken with identical maps P (equivalently, tensors A), in as much the
same way as MPS are chosen to be FCS. The states so constructed have been called iPEPS
[45] and coincide with the vertex-matrix product ansatz introduced earlier [22]. In that paper,
another family of translationally invariant states was introduced, motivated by the interaction
round the face models in statistical mechanics. In a square lattice, the tensors A are at the
vertices of the B sublattice. The physical index, n, of the tensor An

α11,α12,α21,α22
is associated

with the vertices of the B sublattice, whereas the auxiliary indices, αij , are at the bonds. Thus,
the contraction of the indices in that case is different, since each auxiliary variable is common
to four tensors (and not two, like in the other case, see figure 13) (see also [102, 103]). One
can extend this last class of states to include other tensor structures as shown in figure 13(c).
In that state, there are two kinds of tensors: those that are represented by circles and have
one physical index and four auxiliary ones, and those represented by squares with no physical
index [101]. The reason for the construction of those tensors is that this is an effective way of
increasing the entanglement among nodes without increasing the bound dimension, but just
the number of tensors. Since the PEPS algorithms typically have a much milder dependence
of the computational time with the number of tensors than with the bond dimension, this has
a very positive effect on the algorithms. Finally, there is yet another interesting class of states
introduced by Nishino and collaborators who also extend the ones proposed by Sierra and
Martin–Delgado as interaction round a face type. They naturally appear in the transfer matrix
of 3D classical models. In those states, each tensor now belongs to a plaquette, and depends on
all the physical and auxiliary indices around the plaquette (i.e. have the form An11,n12,n21,n22

α11,α12,α21,α22
).

Note that dropping the dependence on n12, n21 and n22 on that tensor we obtain the one of
figure 13(b).

We finally briefly mention other states which have an interesting property: string-bond
states [104] and the entangled-plaquette states [105]. The coefficients of those states in the
spin basis are expressed as products of other coefficients. In the first case, the latter coefficients
are just MPS along different strings going through some spins in the lattice; in the second,
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they correspond to large overlapping plaquettes. The main feature of those states is that the
expectation values can be calculated using Monte Carlo methods. Other interesting states
displaying that property have been introduced by Sandvik [106–108].

6. Summary and perspectives

It is very remarkable that one can identify the corner of Hilbert space which is relevant to
describe the ground and thermal equilibrium states for a large variety of Hamiltonians. Those
states are the MPS and their generalization to higher spatial dimensions, the so-called PEPS.
Here we have reviewed those and other families of states (including the TTS and MERA)
which are a subclass of TPS. We have shown how most of them (all except PEPS) follow
immediately from some real-space renormalization procedure. We have characterized them,
and shown how one can build algorithms with them to perform different tasks, ranging from
finding ground states, thermal states, evolutions, etc.

There remain very important problems in the context of TPS. First of all, it would be very
interesting to prove beyond the intuitive arguments and the successful numerical results that
the different procedures to determine expectation values of PEPS converge in practice. Also,
even though we know that the state we are looking for is close to an MPS or a PEPS, nothing
guarantees that our algorithm (DMRG or its extensions) will find it, although in all practical
situations it does. Thus, it would be very interesting to find conditions under which this will
be the case. Note that there exist problems for which the ground state is an MPS but it cannot
be found [109], or other in which it is a PEPS and it cannot be efficiently contracted, since that
would violate the general believe in computer science that some problems are exponentially
hard [110, 111]. Apart from that, when we have talked about the corner of Hilbert space
we have always restricted ourselves to ground or thermal states of short-range interacting
Hamiltonians. But, what happens for long-range Hamiltonians? Or, for time evolution? In
the last case it can be shown that even in 1D an MPS can, in general, only approximate the
state for short times [112, 113]. This indicates that the MPS are not well suited to describe
time evolution for long times, and that the family of states describing that corner of Hilbert
space is a completely different one.

Another challenge is to find more efficient algorithms that work in higher dimensions, for
example, the time resources associated with the algorithm based on PEPS to determine the
ground state of a 2D Hamiltonian with open boundary conditions scales like N2D10, which
allows to work with up to 20 × 20 lattices of spin 1/2 particles with D = 5. For problems
with periodic boundary conditions or higher dimensions, the dependence is even worse, which
makes it unpractical. The same is true for the MERA algorithms in two and higher dimensions.
In particular, in 2D it scales as D16 [115]. Thus, we have to find ways of determining the
states more efficiently, or new families of states (related to PEPS) for which we can do this
task much faster. One possibility which is currently exploited and is very promising consists
of combining the TPS and other descriptions with Monte Carlo methods [104–108].

Acknowledgments

We wish to thank the people who has collaborated with us on the subject of this manuscript.
Special thanks go also to M C Banuls, J von Delft, W Duer, J Garcia-Ripoll, M Hastings,
C Kraus, J I Latorre, I Mc Cullogh, M A Martin-Delgado, F Mezzacapo, V Murg, T Nishino,
R Orus, B Paredes, D Perez-Garcia, B Pirvu, D Porras, E Rico, M Sanz, N Schuch,
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[75] Rommer S and Östlund S 1997 Phys. Rev. B 55 2164
[76] Vidal G 2007 Phys. Rev. Lett. 98 070201
[77] Vidal G 2003 Phys. Rev. Lett. 91 147902
[78] Korepin V and Verstraete F in preparation
[79] Friedman B 1997 J. Phys.: Condens. Matter. 9 9021
[80] Martin-Delgado M A, Rodriguez-Laguna J and Sierra G 2002 Phys. Rev. B 65 155116
[81] Nagaj D, Farhi E, Goldstone J, Shor P and Sylvester I 2008 Phys. Rev. B 77 214431
[82] Shi Y Y, Duan L M and Vidal G 2006 Phys. Rev. A 74 022320
[83] Ma S K, Dasgupta C and Hu C K 1979 Phys. Rev. Lett. 43 1434
[84] Fisher D S 1994 Phys. Rev. B 50 3799
[85] Fisher D S 1995 Phys. Rev. B 51 6411
[86] Evenbly G and Vidal G 2009 Phys. Rev. B 79 144108
[87] Pfeifer R N C, Evenbly G and Vidal G Phys. Rev. A 79 040301
[88] Montangero S, Rizzi M, Giovannetti V and Fazio R arXiv:0810.1414
[89] Giovannetti V, Montangero S and Fazio R 2008 Phys. Rev. Lett. 101 180503
[90] Giovannetti V, Montangero S, Rizzi M and Fazio R 2009 Phys. Rev. A 79 052314
[91] Evenbly G and Vidal G arXiv:0710.0692
[92] Rizzi M, Montangero S and Vidal G 2008 Phys. Rev. A 77 052328
[93] Tagliacozzo L, Evenbly G and Vidal G arXiv:0903.5017
[94] Evenbly G and Vidal G arXiv:0904.3383
[95] Isacsson A and Syljuasen O F 2006 Phys. Rev. E 74 026701
[96] Murg V, Verstraete F and Cirac J I 2007 Phys. Rev. A 75 033605
[97] Murg V, Verstraete F and Cirac J I arXiv:0901.2019
[98] Orus R and Vidal G arXiv:0905.3225
[99] Bauer B, Vidal G and Troyer M arXiv:0905.4880

[100] Cirac J I, Dür W, Kraus B and Lewenstein M 2001 Phys. Rev. Lett. 86 544
[101] Murg V, Verstraete F and Cirac J I in preparation
[102] Hubener R, Nebendahl V and Dur W arXiv:0904.1925
[103] Rico E, Hubener R, Montangero S, Moran N, Pirvu B, Vala J and Briegel H J arXiv:0811.1049
[104] Schuch N, Wolf M M, Verstraete F and Cirac J I 2008 Phys. Rev. Lett. 100 040501
[105] Mezzacapo F, Schuch N, Boninsegni M and Cirac J I arXiv:0905.3898
[106] Sandvik A W arXiv:0710.3362
[107] Sandvik A W and Evertz H G arXiv:0807.0682
[108] Sandvik A W and Vidal G arXiv:0708.2232

33

http://dx.doi.org/10.1103/PhysRevB.76.035114
http://dx.doi.org/10.1103/PhysRevB.73.085115
http://dx.doi.org/10.1007/BF01055710
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevB.78.205116
http://www.arxiv.org/abs/0901.0214
http://dx.doi.org/10.1103/PhysRevLett.95.110503
http://dx.doi.org/10.1103/PhysRevLett.95.140501
http://dx.doi.org/10.1103/PhysRevB.73.014410
http://dx.doi.org/10.1103/PhysRevLett.88.256403
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://www.arxiv.org/abs/0606018
http://dx.doi.org/10.1103/PhysRevB.71.241101
http://www.arxiv.org/abs/0903.3253
http://www.arxiv.org/abs/0904.1926
http://dx.doi.org/10.1103/PhysRevLett.95.057206
http://dx.doi.org/10.1080/14789940801912366
http://www.arxiv.org/abs/0504305v1
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevB.55.2164
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1088/0953-8984/9/42/016
http://dx.doi.org/10.1103/PhysRevB.65.155116
http://dx.doi.org/10.1103/PhysRevB.77.214431
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/10.1103/PhysRevLett.43.1434
http://dx.doi.org/10.1103/PhysRevB.50.3799
http://dx.doi.org/10.1103/PhysRevB.51.6411
http://dx.doi.org/10.1103/PhysRevB.79.144108
http://dx.doi.org/10.1103/PhysRevA.79.040301
http://www.arxiv.org/abs/0810.1414
http://dx.doi.org/10.1103/PhysRevLett.101.180503
http://dx.doi.org/10.1103/PhysRevA.79.052314
http://www.arxiv.org/abs/0710.0692
http://dx.doi.org/10.1103/PhysRevA.77.052328
http://www.arxiv.org/abs/0903.5017
http://www.arxiv.org/abs/0904.3383
http://dx.doi.org/10.1103/PhysRevE.74.026701
http://dx.doi.org/10.1103/PhysRevA.75.033605
http://www.arxiv.org/abs/0901.2019
http://www.arxiv.org/abs/0905.3225
http://www.arxiv.org/abs/0905.4880
http://dx.doi.org/10.1103/PhysRevLett.86.544
http://www.arxiv.org/abs/0904.1925
http://www.arxiv.org/abs/0811.1049
http://dx.doi.org/10.1103/PhysRevLett.100.040501
http://www.arxiv.org/abs/0905.3898
http://www.arxiv.org/abs/0710.3362
http://www.arxiv.org/abs/0807.0682
http://www.arxiv.org/abs/0708.2232


J. Phys. A: Math. Theor. 42 (2009) 504004 J I Cirac and F Verstraete

[109] Schuch N, Cirac J I and Verstraete F 2008 Phys. Rev. Lett. 100 250501
[110] Verstraete F, Wolf M M, Perez-Garcia D and Cirac J I 2006 Phys. Rev. Lett. 96 220601
[111] Schuch N, Wolf M M, Verstraete F and Cirac J I 2007 Phys. Rev. Lett. 98 140506
[112] Schuch N, Wolf M M, Verstraete F and Cirac J I 2008 Phys. Rev. Lett. 100 030504
[113] Calabrese P and John Cardy J 2007 J. Stat. Mech. P10004
[114] Verstraete F, Cirac J I, Latorre J I, Rico E and Wolf M M 2005 Phys. Rev. Lett. 94 140601
[115] Evenbly G and Vidal G 2009 Phys. Rev. Lett. 102 180406

34

http://dx.doi.org/10.1103/PhysRevLett.100.250501
http://dx.doi.org/10.1103/PhysRevLett.96.220601
http://dx.doi.org/10.1103/PhysRevLett.98.140506
http://dx.doi.org/10.1103/PhysRevLett.100.030504
http://dx.doi.org/10.1088/1742-5468/2007/10/P10004
http://dx.doi.org/10.1103/PhysRevLett.94.140601
http://dx.doi.org/10.1103/PhysRevLett.102.180406

	1. Introduction
	1.1. DMRG and tensor product states
	1.2. The corner of Hilbert space
	1.3. Tensor product states and renormalization group methods

	2. Matrix product states
	2.1. Expectation values
	2.2. Real-space renormalization group
	2.3. Density matrix renormalization group
	2.4. Matrix product states and projected entangled pair states
	2.5. Translationally invariant systems
	2.6. Graphical representation
	2.7. Sequential generation of matrix product states
	2.8. Approximating states with matrix product states
	2.9. Matrix product operators

	3. Tree tensor states
	3.1. Expectation values
	3.2. Renormalization group
	3.3. Matrix product states versus tree tensor states
	3.4. Other remarks

	4. Multiscale entanglement renormalization ansatz
	5. Higher dimensions
	5.1. Projeted entangled pair states in two dimensions
	5.2. Other approaches

	6. Summary and perspectives
	Acknowledgments
	References

